综合智慧能源 ›› 2024, Vol. 46 ›› Issue (7): 1-11.doi: 10.3969/j.issn.2097-0706.2024.07.001
• 综合能源系统 • 下一篇
王泽宁1(), 李文中2,*(
), 李东辉1(
), 徐泰山1, 俞俊1
收稿日期:
2024-04-07
修回日期:
2024-05-14
出版日期:
2024-07-25
通讯作者:
* 李文中(1979),男,教授,博士,中国计算机学会(CCF)会员,从事分布式计算、深度学习、智慧能源系统建模等方面的研究,lwz@nju.edu.cn。作者简介:
王泽宁(1969),男,高级工程师,博士,从事新型电力系统技术战略方面的研究,wzn@vip.sina.com;基金资助:
WANG Zening1(), LI Wenzhong2,*(
), LI Donghui1(
), XU Taishan1, YU Jun1
Received:
2024-04-07
Revised:
2024-05-14
Published:
2024-07-25
Supported by:
摘要:
新型电力系统是一个典型的复杂系统,源荷双侧的强不确定性导致电力电量时空分布极度不平衡,电力电量平衡逻辑发生了根本性变化,电力平衡面临巨大的挑战。为建立源网荷储多元协同互动的新型平衡模式,根据分层可以弱化复杂系统复杂性的理念,提出了基于能量自治单元的分层自治电力平衡模式。能量自治单元具备自调度、自平衡能力,在不同市场模式下具备不同的具体形态,将成为多元海量资源参与电力市场的有效途径。基于软件范型理论,指出能量自治单元应具备多元融合的架构模型、自适应运行机理和持续演化的生命周期,同时介绍了基于软件定义的能量自治单元软硬件解耦构建思路。最后,对能量自治单元构建的关键技术进行了讨论和展望。
中图分类号:
王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11.
WANG Zening, LI Wenzhong, LI Donghui, XU Taishan, YU Jun. Construction of the hierarchical autonomous power balance model for software-defined new power systems[J]. Integrated Intelligent Energy, 2024, 46(7): 1-11.
[1] | 周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望——试论三代电网[J]. 中国电机工程学报, 2013, 33(22):1-11. |
ZHOU Xiaoxin, CHEN Shuyong, LU Zongxiang. Review and prospect for power system development and related technologies: A concept of three-generation power systems[J]. Proceedings of the CSEE, 2013, 33(22): 1-11. | |
[2] | 吴克河, 王继业, 李为, 等. 面向能源互联网的新一代电力系统运行模式研究[J]. 中国电机工程学报, 2019, 39(4):966-978. |
WU Kehe, WANG Jiye, LI Wei, et al. Research on the operation mode of new generation electric power system for the future energy internet[J]. Proceedings of the CSEE, 2019, 39(4): 966-978. | |
[3] | 翟明玉. 现代电网调度控制技术[M]. 北京: 中国电力出版社, 2020. |
[4] | IEA. Power system in transition:Challenges and opportunities ahead for electricity security[R]. Paris: IEA, 2020. |
[5] | 李明节, 陈国平, 董存, 等. 新能源电力系统电力电量平衡问题研究[J]. 电网技术, 2019, 43(11): 3979-3986. |
LI Mingjie, CHEN Guoping, DONG Cun, et al. Research on power balance of high proportion renewable energy system[J]. Power System Technology, 2019, 43(11): 3979-3986. | |
[6] | IRENA. Power system flexibility for the energy transition[R]. Abu Dhabi: IRENA, 2018. |
[7] | 陈启鑫, 房曦晨, 郭鸿业, 等. 电力现货市场建设进展与关键问题[J]. 电力系统自动化, 2021, 45(6):3-15. |
CHEN Qixin, FANG Xichen, GUO Hongye, et al. Progress and key issues for construction of electricity spot market[J]. Automation of Electric Power System, 2021, 45(6):3-15. | |
[8] | 国家电力调度控制中心. 电力现货市场实务[M]. 北京: 中国电力出版社, 2023. |
[9] | 高志远, 冯树海, 薛必克, 等. 集中式现货市场下的省级调度业务框架设计[J]. 电力系统自动化, 2019, 43(18):185-191. |
GAO Zhiyuan, FENG Shuhai, XUE Bike, et al. Business framework design of provincial dispatching center in centralized electricity spot market[J]. Automation of Electric Power System, 2019, 43(18):185-191. | |
[10] | 辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考[J]. 中国电机工程学报, 2022, 42(9):3117-3126. |
XIN Baoan, SHAN Baoguo, LI Qionghui, et al. Rethinking of the "Three Elements of Energy" toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE. 2022, 42(9):3117-3126. | |
[11] | 樊宇琦, 丁涛, 孙瑜歌, 等. 国内外促进可再生能源消纳的电力现货市场发展综述与思考[J]. 中国电机工程学报, 2021, 41(5):1729-1752. |
FAN Yuqi, DING Tao, SUN Yuge, et al. Review and cogitation for worldwide spot market development to promote renewable energy accommodation[J]. Proceedings of the CSEE, 2021, 41(5):1729-1752. | |
[12] | 马莉, 范孟华, 曲昊源, 等. 中国电力市场建设路径及市场运行关键问题[J]. 中国电力, 2020, 53(12):1-9. |
MA Li, FAN Menghua, QU Haoyuan, et al. Construction path and key operation issues of electricity market in China[J]. Electric Power, 2020, 53(12):1-9. | |
[13] | PINSON P. What may future electricity markets look like?[J]. Journal of Modern Power Systems and Clean Energy, 2023, 11 (3): 705-713. |
[14] | PINSON Pierre, BAROCHE Thomas, MORET Fabio, 等. 以用户为中心的新兴电力市场模式[J]. 供用电, 2017, 34(12) :27-31. |
PINSON Pierre, BAROCHE Thomas, MORET Fabio, et al. The emergence of consumer-centric electricity markets[J]. Distribution & Utilization, 2017, 34 (12) : 27-31. | |
[15] | 国家发展改革委, 国家能源局. 电力现货市场基本规则(试行)[EB/OL]. (2023-09-07)[2024-03-26]. https://www.ndrc.gov.cn/xxgk/zcfb/ghxwj/202309/t20230915_1360625.html. |
[16] | 舒印彪, 陈国, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6):61-69. |
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6):61-69. | |
[17] | 徐泰山. 新型电力系统运行与控制中的“不变”与“变”[J]. 能源评论, 2021(9): 56-57. |
XU Taishan. "No changes" and "changes" of new power system operation and control[J]. Energy Review, 2021(9): 56-57. | |
[18] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9):171-191. |
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9):171-191. | |
[19] | 弭辙, 胡健祖, 郭珍妮, 等. 新型电力系统体系下新能源发展态势及市场化消纳研究[J]. 山东电力技术, 2023, 50(10):1-8. |
MI Zhe, HU Jianzu, GUO Zhenni, et al. Research on the development situation and market-oriented consumption of renewable energy under new power system architecture[J]. Shandong Electric Power, 2023, 50(10):1-8. | |
[20] | IEA. Status of power transformation 2019[R]. Paris: IEA, 2019. |
[21] | 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46(16):3-16. |
LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power System, 2022, 46(16):3-16. | |
[22] | IEA. Net zero by 2050:A roadmap for the global energy sector[R]. Paris: IEA, 2021. |
[23] | 《新型电力系统发展蓝皮书》编写组. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版, 2023. |
[24] | 孙惠, 翟海保, 吴鑫. 源网荷储多元协调控制系统的研究及应用[J]. 电工技术学报, 2021, 36(15): 3264-3271. |
SUN Hui, ZHAI Haibao, WU Xin. Research and application of multi-energy coordinated control of generation, network, load and storage[J]. Transactions of China Electrotechnical Society, 2021, 36(15):3264-3271. | |
[25] |
冷喜武, 刘闯, 何蕾, 等. 可调节负荷并网运行标准研究与应用[J]. 发电技术, 2022, 43(6):834-842.
doi: 10.12096/j.2096-4528.pgt.22067 |
LENG Xiwu, LIU Chuang, HE Lei, et al. Research and application of grid-connected operation standard for adjustable load[J]. Power Generation Technology, 2022, 43(6):834-842.
doi: 10.12096/j.2096-4528.pgt.22067 |
|
[26] | LORENZO K. The bottom-up (R)evolution of the electric power system:The pathway to the integrated-decentralized system[J]. IEEE Power and Energy, 2019: 17(2):42-49. |
[27] | 程浩原, 艾芊, 高扬, 等. 关于细胞-组织视角的能源互联网分布式自治系统形态特征的讨论[J]. 全球能源互联网, 2019, 2(5): 466-475. |
CHENG Haoyuan, AI Qian, GAO Yang, et al. Morphological characteristics of distributed autonomous system in energy internet from the perspective of cell-tissue[J]. Journal of Global Energy Interconnection, 2019, 2(5): 466-475. | |
[28] | 余贻鑫, 刘艳丽, 秦超, 等. 分层分群电网体系结构[J]. 电力系统保护与控制, 2020, 48(22): 1-8. |
YU Yixin, LIU Yanli, QIN Chao, et al. Layered and clustered grid architecture[J]. Power System Protection and Control, 2020, 48(22): 1-8. | |
[29] | 郭敏, 夏明超, 陈奇芳. 基于能源自组织的能源-信息-交通-社会耦合网络研究综述[J]. 中国电机工程学报, 2021, 41(16):5521-5539. |
GUO Min, XIA Mingchao, CHEN Qifang. A review of the energy-cyber-transportation-social coupling network based on energy self-organization[J]. Proceedings of the CSEE, 2021, 41(16) :5521-5539. | |
[30] | 鞠平, 姜婷玉, 黄桦. 浅论新型电力系统的“三自”性质[J]. 中国电机工程学报, 2023, 43(7):2598-2607. |
JU Ping, JIANG Tingyu, HUANG Hua. Brief discussion on the "three-self" nature of the new power system[J]. Proceedings of the CSEE, 2023, 43(7) :2598-2607. | |
[31] | MICHELL M. Complexity: A guided tour[M]. Oxford: Oxford University Press, 2009. |
[32] | 宋学锋. 复杂性科学研究现状与展望[J]. 复杂系统与复杂性科学, 2005, 2(1): 10-17. |
SONG Xuefeng. Survey and prospect on the science of complexity[J]. Complex System and Complexity Science, 2005, 2(1): 10-17. | |
[33] | SIMON H A. The sciences of the artificial[M]. 3rd Edition. Cambridge: Massachusetts Institute of Technology Press, 1996. |
[34] | 孙晶琪. 基于复杂系统的电力市场有效竞争研究[D]. 北京: 华北电力大学, 2013. |
SUN Jingqi. Research of effective competition in electricity market based on complex system theory[D]. Beijing: North China Electric Power University, 2013. | |
[35] |
梅文卿, 刘晓峰, 王嘉诚, 等. 基于势博弈的负荷聚合商日前市场动态定价模型[J]. 综合智慧能源, 2023, 45(11): 62-69.
doi: 10.3969/j.issn.2097-0706.2023.11.008 |
MEI Wenqing, LIU Xiaofeng, WANG Jiacheng, et al. A day-ahead market pricing model for load aggregators based on potential game[J]. Integrated Intelligent Energy, 2023, 45(11):62-69.
doi: 10.3969/j.issn.2097-0706.2023.11.008 |
|
[36] | 唐跃中, 夏清, 张鹏飞, 等. 能源互联网价值创造、业态创新与发展战略[J]. 全球能源互联网, 2022, 5(2):105-115. |
TANG Yuezhong, XIA Qing, ZHANG Pengfei, et al. Value creation, business model innovation and development plan of the energy internet[J]. Journal of Global Energy Interconnection[J]. 2022, 5(2):105-115. | |
[37] | 山西省能源局. 源网荷储一体化项目管理办法[EB/OL].(2022-05-26)[2024-03-26]. http://nyj.shanxi.gov.cn/zfxxgk/fdzdgknr/snyjwj/sjwj/202302/t20230203_7915105.html. |
[38] | 国家发展改革委, 国家能源局. 关于推进电力源网荷储一体化和多能互补发展的指导意见[EB/OL].(2021-02-25)[2024-03-26]. http://www.gov.cn/zhengce/zhengceku/2021-03/06/content_5590895.htm. |
[39] |
方刚, 王静, 张波波, 等. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55.
doi: 10.3969/j.issn.2097-0706.2024.01.006 |
FANG Gang, WANG Jing, ZHANG Bobo, et al. Research on optimization algorithm of industrial park microgrid configuration based on Pareto solution set[J]. Integrated Intelligent Energy, 2024, 46(1): 49-55.
doi: 10.3969/j.issn.2097-0706.2024.01.006 |
|
[40] |
谷菁, 张海珍, 阮慧锋, 等. 园区供能企业向综合能源服务商转型思路探索[J]. 综合智慧能源, 2022, 44(12): 62-67.
doi: 10.3969/j.issn.2097-0706.2022.12.009 |
GU Jing, ZHANG Haizhen, RUAN Huifeng, et al. Exploration on the transformation of energy supply enterprises to integrated energy service providers in industrial parks[J]. Integrated Intelligent Energy, 2022, 44(12): 62-67.
doi: 10.3969/j.issn.2097-0706.2022.12.009 |
|
[41] | SIOSHANSI F. Consumer prosumer, prosumager: How service innovations will disrupt the utility business model[M]. San Diego: Elsevier Academic Press, 2019. |
[42] | 中国电力企业联合会. 2022年度电化学储能电站行业统计数据[R]. 北京: 中国电力企业联合会, 2023. |
[43] | 谢开. 美国电力市场运行与监管实例分析[M]. 北京: 中国电力出版社, 2017. |
[44] | 谢开, 彭鹏, 荆朝霞, 等. 欧洲统一电力市场设计与实践[M]. 北京: 中国电力出版社, 2022. |
[45] | 卫志农, 余爽, 孙国强, 等. 虚拟电厂的概念与发展[J]. 电力系统自动化, 2013, 37(13):1-9. |
WEI Zhinong, YU Shuang, SUN Guoqiang, et al. Concept and development of virtual power plant[J]. Automation of Electric Power Systems, 2013, 37(13): 1-9. | |
[46] | 王宣元, 刘敦楠, 刘蓁, 等. 泛在电力物联网下虚拟电厂运营机制及关键技术[J]. 电网技术, 2019, 43(9):3175-3183. |
WANG Xuanyuan, LIU Dunnan, LIU Zhen, et al. Operation mechanism and key technologies of virtual power plant under ubiquitous Internet of Things[J]. Power System Technology, 2019, 43(9):3175-3183. | |
[47] | 牛文娟, 李扬, 王蓓蓓. 考虑不确定性的需求响应虚拟电厂建模[J]. 中国电机工程学报, 2014, 34(22):3630-3637. |
NIU Wenjuan, LI Yang, WANG Beibei. Demand response based virtual power plant modeling considering uncertainty[J]. Proceedings of the CSEE, 2014, 34(22):3630-3637. | |
[48] | 葛鑫鑫, 付志扬, 徐飞, 等. 面向新型电力系统的虚拟电厂商业模式与关键技术[J]. 电力系统自动化, 2022, 46(18):129-146. |
GE Xinxin, FU Zhiyang, XU Fei, et al. Business model and key technologies of virtual power plant for new power system[J]. Automation of Electric Power Systems, 2022, 46(18): 129-146. | |
[49] |
刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
LIU Jian, LIU Yuxin, ZHUANG Hanyu. Key technologies and construction practices of virtual power plants[J]. Integrated Intelligent Energy, 2023, 45(6): 59-65.
doi: 10.3969/j.issn.2097-0706.2023.06.008 |
|
[50] | 王鹏, 王冬容. 走进虚拟电厂[M]. 北京: 机械工业出版社, 2021. |
[51] | ANSELM E, TIM S. Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate[J]. Energy Policy, 2022(170):113220. |
[52] | Federal Energy Regulatory Commission. Order No. 2222[R]. Washington DC: FERC, 2020. |
[53] | KONIDENA R. Grid operators must follow CAISO's approach to multi-nodal aggregation[EB/OL]. (2022-03-10)[2024-03-26]. https://www.renewableenergyworld.com/policy-regulation/grid-operators-must-follow-caisos-approach-to-multi-nodal-aggregation/. |
[54] | Agora Energiewende. The liberalization of electricity markets in Germany:History, development and current status[R]. Berlin:Agora Energiewende, 2019. |
[55] | Deutsche Energie-Agentur. Flexibility technologies and measures in the German power system[R]. Berlin:Deutsche Energie-Agentur, 2021. |
[56] | MCKEOWN N, ANDERSON T, BALAKRISHNAN H, et al. OpenFlow: Enabling innovation in campus networks[J]. Computer Communication Review, 2008(2): 69-74. |
[57] | 梅宏. 软件定义一切:挑战和机遇(CNCC 2017主旨报告)[EB/OL].(2017-10-26)[2024-03-26]. https://dl.ccf.org.cn/video/videoDetail.html?id=5531122079189000. |
[58] | 梅宏, 曹东刚, 谢涛. 泛在操作系统:面向人机物融合泛在计算的新蓝海[J]. 中国科学院院刊, 2022, 37 (1):30-37. |
MEI Hong, CAO Donggang, XIE Tao. Ubiquitous operating system: Toward the blue ocean of human-cyber-physical ternary ubiquitous computing[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(1): 30-37. | |
[59] | 吕建. 软件新技术发展之道初探(CNCC 2018主旨报告)[EB/OL].(2018-10-27)[2024-03-26]. https://dl.ccf.org.cn/video/videoDetail.html?id=5531122079418385. |
[60] | 曹春, 马晓星. 面向人机物融合应用的场景计算机[J]. 中国计算机学会通讯, 2020, 16(4): 31-36. |
CAO Chun, MA Xiaoxing. Building a computing platform for social-cyber-physical convergence applications[J]. Communications of the CCF, 2020, 16(4): 31-36. | |
[61] | 许畅, 秦逸, 余萍, 等. 可成长软件理论方法和实现技术:从范型到跨越[J]. 中国科学:信息科学, 2020, 50(11): 1595-1611. |
XU Chang, QIN Yi, YU Ping, et al. Theories and techniques for growing software: Paradigm and beyond[J]. SCIENTIA SINICA Informationis, 2020, 50(11): 1595-1611. |
[1] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[2] | 黄晓凡, 李佳瑞, 刘晖, 汤效平, 王兹尧, 王彤. 梯次利用动力电池储能系统综合效益分析[J]. 综合智慧能源, 2024, 46(7): 63-73. |
[3] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[4] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[5] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[6] | 俞胜, 周霞, 沈希澄, 戴剑丰, 刘增稷. 考虑网络攻击影响的源网荷储系统风险评估[J]. 综合智慧能源, 2024, 46(5): 41-49. |
[7] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[8] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[9] | 丁乐言, 柯松, 杨军, 施兴烨. 基于自适应控制参数整定的虚拟同步发电机控制策略[J]. 综合智慧能源, 2024, 46(3): 35-44. |
[10] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[11] | 魏夕凯, 谭效时, 林明, 程俊杰, 向可祺, 丁书欣. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
[12] | 李彦高, 林健, 马雨彤. 电价改革形势下电网企业代理购电风险分析及应对策略研究[J]. 综合智慧能源, 2024, 46(3): 79-86. |
[13] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[14] | 张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46(2): 12-18. |
[15] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||